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We investigate the ordering phase diagram of an binary alloy on a face centered 
cubic lattice. In Ising spin language the nearest-neighbor interactions are 
antiferromagnetic with strength J, the next-nearest-neighbor interactions are 
ferromagnetic with strength a J, and the external magnetic field is h. For a > 0 
and all h, the ground state is only finitely degenerate, so Pirogov-Sinai theory 
gives the exact form of the phase diagram in the limit of vanishing temperature. 
For a = 0 and Ih] ~ 12/the ground state is infinitely degenerate, and indeed the 
zero temperature entropy is nonvanishing at the four "super-degenerate" points 
h = •  or • We investigate the finite temperature behavior of the model 
using Monte Carlo simulations and (for a = 0) low temperature expansions. The 
most interesting portions of the phase diagram are those near the super- 
degenerate points. We rigorously map these points onto certain "hard 
constraint" lattice gases~ but can draw no firm conclusions concerning the phase 
diagram in their vicinity. 

KEY WORDS: Ising models; face centered cubic lattice; binary alloys; phase 
diagrams; frustration; first-order phase transitions. 
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The phase diagram of an ordering binary alloy on an fcc latice has been 
the subject of many investigations. (1-22~ Nevertheless, some of its important 
features remain unresolved. We report here results from Monte Carlo 
simulations and low-temperature expansions which shed some light upon, but 
which do not settle, these questions. Some exact theoretical results are also 
presented. 

The model we consider is most easily described in Ising spin language. 
At each site of the lattice there is a spin variable a~ = :t: 1, the value of which 
corresponds to occupation by either of the two species (A or B) of atoms. 
We assume an interaction Hamiltonian of the form 

ni l  n ~ n  

(1) 

where the first sum ranges over nearest-neighbor (nn) and the second over 
next-nearest-neighbor (nnn) pairs of sites (with periodic boundary 
conditions). The coupling constants J >  0 and a J ) 0  correspond to 
antiferromagnetic nn interactions and to ferromagnetic (or vanishing) nnn 
interactions. The external magnetic field h represents, in the alloy language, 
the difference between the chemical potentials of the two atomic species. By 
symmetry it is sufficient to consider h >/0. (More general interactions are 
also of interest and are under investigation(23-2s~). 

The character of the ordering and transitions of this Ising model is 
directly related to the highly interlocked structure of the fcc lattice. In 
contrast with the "open" body centered cubic (bcc) and simple cubic (sc) 
lattices, which may be decomposed into two interpenetrating simple cubic 
lattices, the fcc lattice is composed of four such sublattices. A site on one 
sublattice has four nearest neighbors on each of the three other sublattices, 
for a total of 12, and six next-nearest neighbors, all on its own sublattice. 
The nearest-neighbor interactions, being antiferromagnetic, act to magnetize 
each of the four sublattices in different directions, but this is impossible 
because only two spin directions are available: the system is said to be 
frustrated. A more detailed analysis of the a = 0 ground states (3'26'27~ reveals 
that when I hl < 4J  the ground state consists of (�89 planes, each 
antiferromagnetically ordered within the plane, but with no order between the 
planes. Similarly, when 4 J <  h < 12,/ the ground state (1, 0, 0) planes 
alternate between ferromagnetic order (with all spins up) and 
antiferromagnetic order, again with no correlation from one 
antiferromagnetieally ordered plane to another. The degeneracy of such 
ground states is thus of order 2 z, where L is a linear dimension of the 
system, and the resulting entropy per spin vanishes. The ground states at the 
so called super-degenerate points h = 4J and h = 12 /a re  more complex (see 
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Section 4): they are so degenerate that the system violates the third law of 
thermodynamics and has finite zero temperature entropy. Finally, for 
k > 12J the field dominates and there is only one ground state, in which all 
spins point up. 

The ground states are easier to describe when a > 0. For h < 4J only 
six of the infinitely many a - -0  ground states remain ground states, namely, 
those with the metallurgist's "AB" or "L Io" structure. In such states two of 
the four simple cubic sublattices are occupied by A atoms (i.e., up spins) and 
two by B atoms (i.e., down spins). The sixfold degeneracy simply reflects the 
(4)(3)/2! ways to choose two sublattices out of four. For 4./< h < 12J the 
ground state consists of three sublattices of A atoms and one of B atoms (the 
"A3B" or "L12" structure), so it is fourfold degenerate. For h > 12,/all spins 
point up. In contrast to the situation at a = 0, the ground states at h = 4J 
and 12,/are now simply those of either side, so the degeneracy is tenfold at 
4J and fivefold at 12,/. 

The low-temperature states of a system usually represent a small pertur- 
bation upon its ground states. This observation is made rigorous and precise 
by Pirogov-Sinai theory, (27-3~ which permits exact calculation of phase 
diagrams at sufficiently low temperatures, provided that two conditions are 
met. These conditions are, first, that there exist only a finite number of 
(periodic) ground states, say, gl,..., gr, and second, that the ground states 
satisfy "Peierls' condition." In physical terms, Peierls' condition simply 
requires that the energy cost of putting a piece of one ground state inside a 
lattice of a different ground state be proportional to the surface area 
separating the two. More formally, if one begins with an infinite lattice in 
ground state gi, and changes the configuration in some finite region A to that 
of ground state g~, j 4 : i ,  then Peierls' condition demands that the energy 
increase AU be greater that the surface area of A times some positive 
constant. 

One may easily check that Pirogov-Sinai theory applies to the fcc Ising 
model when a > 0. (In fact because of symmetry the system behaves as if it 
had only one ground state when h ~ i 4 J ,  Jzl2J, and two ground states at 
those points.) The theory may thus be used to check the correctness, at low 
temperatures, of the approximate phase diagrams produced by Monte Carlo 
(MC) simulations ~12-22) or by Kikuchi's cluster variation method 
(CVM). (5-1~ Portions of the full (h, T, a) phase diagram, as obtained by MC 
simulation, are shown in Fig. 1 and 2. Both MC and CVM techniques 
predict that all the phase boundaries shown are first order, except that when 
a is sufficiently large (greater than about 0.3) and h vanishes exactly, the 
transition is continuous. 

The low-temperature features of the phase diagrams in Fig. 1 and 2 are 
readily understood on the basis of Pirogov-Sinai theory. For example, the 
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Fig. 1. Phase diagram determined by the Monte Carlo studies of Binder, Kinzei, and 
Selke, <16'~9~ showing the change in topology as a passes through ar All the phase boundaries 
shown are first order, except for the transition at h = 0, a = 1.0. 

coexistence line springing from h = 4J, T = 0 bends toward the AB phase, so 
that when h = 4.1 and T is small but nonvanishing, the system is in the A 3 B 
phase. This follows from the fact that the A3B structure possesses more low- 
energy excitations than the AB structure does. Specifically, the lowest energy 
excitation of  the A 3B structure is formed by overturning a single up spin, 
while the lowest energy excitation of  the AB structure is formed by over- 
turning a single down spin. (Either of  these excitations has an energy cost of  
12cU when h = 4.I.) Thus, on a lattice of N sites, ~N lowest energy 
excitations of  the A3B structure are possible, while the corresponding 
number for the AB structure is �89 The theory also predicts that the slope of  
the A B - A 3 B  coexistence line diverges exponentially as T--* 0. In addition to 
these a > 0 results, Slawny (3~ has urgued convincingly that the low- 
temperature equilibrium states at h = 0, a = 0 will possess the same AB 
structure shown at h = 0, a > 0. He reasoned by pointing out that, among 
the infinite number of  possible ground states, the six AB ground states have 
the highest density of  low-energy excitations and hence will be the only 
states that "survive" the transition from zero to finite temperature. This 
argument is easily extended to nonzero field, but it is not rigorous because 
Pirogov-Sinai  theory has not, at present, been proven to hold in systems 
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Fig. 2. Monte Carlo phase diagrams for various values of a less than a c. To prevent 
crowding of the figure, the field and temperature are normalized by the zero field ground state 
energy Eo= (2 + 3a)J. The points for a =0.2 were taken from Ref. 19. 

with infinite ground state degeneracy. There is, however, every reason to 
believe that Slawny's argument will produce the correct equilibrium phases 
at low temperatures and for fields away from the super-degenerate values 4,/ 
and 12,/. 

The subtle and unresolved features of  the phase diagram are those 
beyond the reach of  Pirogov-Sinai  theory, namely, the behavior near the 
super-degenerate points when a = 0 ,  and the (moderate temperature) 
crossover from a first order to a continuous transition at h = 0  and 

a = a c ~ 0 . 3 .  
When a is small but positive all methods of  analysis agree upon the 

existence of two triple points, (T t, ht) and (T t , -h t ) ,  where the AB, A3B, and 
disordered phases coexist. The cluster variation method, (5-'~ and some 
Monte Carlo simulations (17'22) indicate that the finite temperature of  this 
triple point persists down to a = 0, while other simulations (14'1~'21) suggest 
that the triple point temperature vanishes, allowing the disordered phase to 
penetrate down to T =  0 (see Fig. 3). (Recall that the zero temperature 
entropy is positive at h = 4J.) 

If, on the other hand, a is allowed to increase, then h t decreases and the 
two triple points eventually merge at h = 0 (see Fig. 1 and 5). This point of  
merger appears to coincide exactly with the multicritical point, already 
mentioned, where the h = 0 transition changes character from first order to 
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Fig. 3. Phase diagrams for a = 0 produced by Monte Carlo (MC) simulations and by the 
cluster variation method (CVM). These results have been taken from Ref. 14 and 9, respec- 
tively. The super-degenerate points at h = 4./and h = 12./possess finite entropy at zero tem- 
perature. 

continuous.  The existence of  this mult icr i t ical  point  is necessary (12'13> to 
allow the correct  a - ~  o o  behavior ,  because in this l imit  the four inter- 
penetrat ing simple cubic sublatt ices decouple to become four independent sc 
ferromagnet ic  Ising lattices, which exhibit  cont inuous phase transit ions.  The 
idenity of the mult icr i t ical  point  and the merging point  of the tr iple points 
was predicted by Domany ,  Shnidman,  and Mukamel  on the basis of  mean 
field approximat ions  and renormal iza t ion  group arguments.  ~32~ It is 
consistent  with M C  and CVM results, but  is by no means an established 
fact. 

An  outline of the remainder  of  this paper  follows. In Section 2 we 
present the results of  our Monte  Car lo  s imulat ions and discuss their relat ion 
to previous work. We at tempt  to study the super-degenerate point  at h = 4,/, 
a = 0, T = 0 by approaching  it s lowly from the a > 0 side, but  it is not  clear 
whether simple ext rapola t ion of  such results to a = 0 is justified. This section 
also presents a few results concerning the mult icr i t ical  point  near a = 0.3. In 
Section 3 we use the results of  Slawny (31> to derive a sixth-order low- 
temperature  series expansion for the free energy of  the a = 0 AB phase as a 
function of  h and T. The effective use of  this expansion is, however,  current ly 
restr icted to h = 0. In Section 4 we r igorously  identify the super-degenerate 
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points with certain one-parameter constrained lattice gases. This maping of 
points onto lines may permit detailed study of the super-degenerate points. 
We discuss some exact results obtainable from this approach and suggest 
future approximate work. 

2. MONTE CARLO SIMULATIONS 

We performed Monte Carlo simulations on an fcc lattice of 2048 sites 
(a cube with eight conventional unit cells on a side), utilizing single spin flip 
kinetics (Glauber dynamics). Most runs were started in a disordered 
configuration, but some were started in the AB or A3B structure. The 
simulations were generally run for 1000 Monte Carlo steps per site 
(MCS/site) (where a Monte Carlo step is defined as an attempted spin flip, 
whether successful or not), but in some cases 5000 or even 10 000 MCS/site 
were required to get out of a metastable state and reach equilibrium. The 
program was written in FORTRAN and used individual bits to represent spins. 
It was run on a CDC 7600 computer and used about 1 minute of CPU time 
per 106 attempted spin flips. Simulations were performed at a = 0.025, 0.05, 
0.1, 0.17, and 0.22. For any given a, the phase boundary was determined by 
measuring various thermodynamic quantities (energy, specific heat, 
sublattice magnetizations, and staggered susceptibilities) for a range of 
values of kB T/J and h/J, and looking for approximate discontinuties. In 
addition, the detailed structure of the configuration was used as an important 
indicator of the phase of the system. 

Figure 2 presents our observed phase boundaries, together with those 
obtained by Binder (~9~ at a = 0.2. As a increases the triple-point temperature 
Tt(a ) slowly approaches the zero field transition temperature Tc(a ) (see 
Fig. 4). A linear extrapolation of Tt(a ) would have the two curves crossing 
at ac~0 .35 ,  which is within the uncertainty range of the zero field 
simulation results. ~12'13~ Note, however, that a linear extrapolation would 
also require that the two curves cross, rather than merge, in complete 
disagreement with the expected behavior! In fact there is no reason to prefer 
any particular extrapolation over any other, so this value of a c must be taken 
as a very rough estimate. Our results are consistent with the Domany, 
Shnidman, and Mukamel ~32~ prediction of coincidence between the merging 
of the triple points and the change from first-order to second-order behavior 
at zero field. More study is, however, required both to pin down the location 
of a c and to find the critical crossover exponents there. (See also Fig. 5.) 

It is even more difficult to study the a ~ 0 behavior of Tt(a ). While a 
simple linear extrapolation of Tt(a ) in Fig. 3 would yield kB T t (0 )~  0.9J, in 
disagreement with previous results, ~14'2~) there are strong reasons to believe 
that this is an artifact caused by the small size of our system. For example, 
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Fig. 4. The triple point temperature T~ and the zero field transition temperature T c as 
functions of a. 

when we performed simulations at a = 0, h = 4 , / for  k~ T between 0.4J and 
0.6J, we found that an 8 • 8 • 8 system started in a random configuration 
would always order into an A3B structure, but that a 20 • 20 • 20 system 
would remain disordered for as long as we could wait, namely, 
200 MCS/site (more than six million steps in all). Thus our results are 
entirely consistent with those of Binder (14> and Meirovitch. ~21~ Because it 
takes longer and longer to get out of an ordered state as the temperature 
decreases, one could not expect to see the disordering of an initial A3B 
configuration at low temperatures even if the true phase diagram did have a 
disordered phase coming down to the zero temperature super-degenerate 
point. The question in fact cannot be resolved in any reasonably conclusive 
way by the kind of simulations described here. What is needed is either a 
different approach, such as a theory for the low-temperature phase diagram 
in the vicinity of a point with positive T =  0 entropy, or simulations done 
directly on the ground states. We discuss such ideas in the remaining 
sections. 
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Before leaving the simulations, however, we wish to comment upon one 
additional point. Note from Fig. 4 that T C varies smoothly with a, despite the 
dramatic change in the character of the transition at a c. We have discovered 
a remarkably accurate empirical formula for this variation. To set the stage 
for this formula, we first define E 0 to be the ground state energy per site, that 
is, 

e0  = (2 + 3 )J (2) 

Then we form the ratio of the ground state energy due to next-nearest- 
neighbor bonds to the total ground state energy, and call it x: 

x - 3a/(2 + 3a) (3) 

This variable runs monotonically from 0 to 1 as a runs from 0 to 00. Our 
formula for Tc(x ) is then 

k~ Tc(x ) /Eo(x )  = a - b(1 - x) z (4) 

The value of a = 1.5036 is fixed by the accurately known (~3) transition 
temperature of the simple cubic ferromagnetic nearest-neighbor Ising model, 
to which our model reduces when x =  1. Setting the single adjustable 
parameter b to 0.62 then results in a curve which passes within 3% of all of 
the Monte Carlo data points. [A graph of Tc(x ) is presented in Fig. 7 of 
Ref. 13.] 

3. LOW TEMPERATURE EXPANSIONS 

The interesting and controversial features of the fcc Ising 
antiferromagnet phase diagram fall in the low-temperature regime, where 
Monte Carlo simulation is  frequently costly and sometimes unreliable. It 
seems plausable that low-temperature expansions could provide better 
approximate data or, perhaps, even exact results in this limit. We have 
generated low-temperature expansions for the I h l <  4J  ground state in the 
case a = 0, but they are less useful than one might at first suppose. 

As mentioned in the Introduction, the ground state is infinitely 
degenerate when a = 0 and I hl < 4J. Which of these many configurations 
should be used as a starting point for the expansion? An empirical approach 
would be to first expand about each ground state, and then average these 
expansions, giving equal weight to every possible ground state. (34'35) 
Although this approach seems reasonable, Slawny (31) has proven that (in 
those cases to which Pirogov-Sinai theory apply) it is wrong. The correct 
low-temperature expansion is instead produced by expanding about that 

822/38/1 2-28 
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ground state which supports the largest number of low-energy excitations. 
(This conclusion can be understood on physical grounds: At ze ro  
temperature no ground state is preferred because entropy makes no 
contribution tO the free energy and all the ground states have the same 
energy. But at any finite temperature entropy is a factor in the free energy, 
and indeed it is the primary factor which differentiates the low-temperature 
equilibrium phases obtained as perturbations of the ground states. Hence the 
ground state which can contribute most to the entropy, i.e., the one with the 
greatest number of possible low energy excitations, will be preferred as a 
basis for the equilibrium states.) Although Slawny's rigorous arguments rely 
upon a finite degeneracy of ground states, his conclusions probably apply to 
our situation when a = 0 and I h I < 4J, and we accept them in the following. 

In our case it transpires (4) that all of the many ground states admit the 
same number of lowest-energy excitations (which consist of flipping a single 
spin), and indeed they all admit the same number of next lowest energy 
excitations as well! One must examine the third level of excitations before 
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one finds a ground state which admits more excitations than the others. 
Doing this, we find that for all ]h{ < 4J  the preferred ground state is nothing 
other than the familiar AB structure, with two sublattices of up spins and 
two of down spins. We will refer to the two sublattices which, in the ground 
state, are occupied by up spins as the A sublattices, and to the other two as 
the B sublattices. One gains considerable information by assuming that the 
field on the A sublattices, say, h A, is not necessarily the same as the field on 
the B sublattices, h B. This permits derivation of sublattice magnetizations 
and staggered susceptibilities from the free energy. 

In terms of the variables 

X = e -  4 J / k B  T (5) 

and 

YA = e--ZhA/kBr, YB = e-2'%/kBr (6) 

the free energy per site is 

f(T, hA,h~) - 2 J  ~ = -- 5hA + 5h~ -- kB Tg(x, Ya, YB) (7) 

where 

g(x, YA, YB) = x2[�89 +Yff~)] + x3[4y~AYff~] 
4 5 2 +X [--~(YA+y~-2) q- 1 0 ( y ~ y ; l  +y~yf f2)  

+ 2y2Ayff2--4y~ayff~ ] 

+ XSl8(y3 yff 1 + ylayff 3 ) 4- (yZ A + yffZ) + 12(y3Ay~Z +yZAyB-3 ) 

36(y~yf f~+  ~ --2- 100y[yB-2] - -  YA Y~ ) + 4Y 3 Y~- 3 + 

+X6,2~ 4 - 1  1 

2 - -4  + 26(y4Yff 2 +YAYB )--  104(y3AYff ~ + y l y ~ 3 )  

+ (YAYB +Y4AYB + Y~ +y3Ayff4) 
+ 2  -3. + i  +342(y~YB -2 YAYB ) +  38(y[YB -~ YAYff 2) 

+ 12y4yff 4 + 204y~ y~ -3 -- 476yZAyff z] + O(X 7) (8) 

This expansion was derived simply by overturning spins from the ground 
state AB configuration. Disconnected clusters of overturned spins were 
counted by hand, but connected clusters were enumerated by computer using 
a variant of the backtrack algorithm. ~36) The expansion (8) should reduce to 
the zero-field series of Mackenzie and Young(3V): it does not because of a 
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minor error it that result. We are grateful to Dr. Mackenzie for examining 
his derivation and confirming our result. (We also mention here the zero 
field series of  Liu e t  al. (38)) 

The expansion presented above clearly contains considerable 
configurational information on the fcc alloy problem, but it does not contain 
the information needed to investigate the h = 4 J  super-degenerate point. This 
is readily seen by setting T = 0. The true T = 0 free energy per site is 

f ( T =  O, h A = h ,  = h )  = 

- 2 J ,  0~<h ~<4J 

--~h 4J~< h ~< 12J 2 , 
- h ,  12J~< h 

(9) 

but the series cannot, of course, locate the singularities at h = 4J  and 12./. It 
is not directly useful for investigating the super-degenerate points. 

The expansion can, however, be used to obtain considerable information 
concerning the low-field behavior of  our model. In particular, it may  be 
compared with existing zero field, high-temperature free energy expansions to 
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Fig. 6. Various extrapolations of the low-temperature series for the zero field, a = 0 energy 
per site, compared with the Monte Carlo data and transition temperature of Phani et al. (~2'13) 
The various approximants are named according to the system established in Ref. 40: [4/1; O] 
is a truncation of the series, [2/2; ~l] is a direct Pad~ approximant, and [0/2; 11 and [O/1; 2] 
are Dlog Pad6 approximants. 
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locate and characterize the first-order phase transition. Work in this 
direction is currently in progress: an example of the results obtainable is 
presented in Fig. 6, which compares three methods (39'4~ for extrapolating 
the low-temperature energy series with Monte Carlo results. As expected, 
simple truncation of the series produces a poor approximant, which 
underestimates the energy. A direct Pad6 approximant (which can accurately 
approximate a rational function displaying only simple poles) is closer to the 
Monte Carlo results, but is too high. The two Dlog Pad6 approximants 
(which can accurately approximate algebraic functions with branch point 
singularities) agree quite well with both the Monte Carlo points and with 
each other. 

4. CONSTRAINED MODELS AND EXACT ARGUMENTS 

We have seen that both Monte Carlo simulations and low-temperature 
expansions are useful tools for the fcc alloy problem but that neither tool can 
unambiguously describe the system near its super-degenerate points. In this 
section we consider a change of variable which focuses specifically on the 
states obtained in the limit that h and T approach a super-degenerate point 
along certain trajectories. This approach yields certain exact results, and it 
may render either of the above methods more reliable. 

We rewrite Hamiltonian (1) as 

H =Y3~,_. a i a  j - a J \  ~ a i a  j - h o ,__\~ a i - ~h ~_ \ "  a i 

=- H o - -  6 h  ~ a i 

(~o)  

where h 0 is an arbitrarily specified field strength, and 

fih - h - h0 (11) 

We also define 

z = - - e  -2~h/kBT (12) 

so the partition function is 

Z =  W e-Ho/k.~z-~,/2 (13)  
s t a t e s  

Contours of constant z in the (k  B T / J ,  h / J )  plane are lines radiating from the 
point (0, h o / J  ). If such a line has slope 7, it has 

Z = e - 2 / } '  (14) 
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We now consider the limit of zero temperature with J, a, and h 0 held fixed, 
but with 6h vanishing linearly with temperature. In other words, we 
approach a ground state at fixed J, a, and h - - h  o along one of the rays of 
constant z. It can be shown rigorously (41) that in this limit the equilibrium 
states of our antiferromagnetic system are isomorphic to the equilibrium 
states of a certain constrained lattice gas. To see this physically we note that 
in this limit the partition function (for a finite system) is 

Z(ho, = F (15) 

where the sum now extends only over the ground states o f H  o (and where we 
have adjusted the energy zero so that H 0 = 0 for a ground state). This 
partition function defines a new statistical mechanical problem which is 
analyzed most conveniently in lattice gas language. To associate down spins 
with occupied sites we use the occupation variable 

Pi = (1 - t7i)/2 (16) 

so the partition function becomes 

Z(ho, z) = z-N/  F z" 07) 

where n is the number of occupied sites in a configuration. (Note that this 
exercise works equally well for any uniform field ising model, regardless of 
the lattice or of the range and type of interaction.) 

To discover the character of these lattice gas problems we must 
investigate the ground states of H 0. For a = 0 this is most convienently 
done (a'26'27) by dissecting the fcc lattice into its constituant tetrahedra. Each 
lattice site is shared by eight tetrahedra and each nearest-neighbor bond by 
two tetrahedra. Thus a tetrahedron with sites i, j ,  k, and l contributes an 
amount 

Er(ai ,  aj, og, at) =- �89 + aio k + ai~r t + gig k + ajar + r 
(18) 

+ ~h0(~i + c~j + (~ + c~l) 

to the Hamiltonian H 0. We then find that configuration of a single 
tetrahedron which minimizes E r ,  and attempt to piece together such 
configurations to fill the entire lattice. If  we can so fill the lattice, then we 
have found a ground state. If we cannot, then we must begin the procedure 
anew by dissecting the lattice into different subunits. (It transpires that only 
tetrahedra are needed when ce = O, but other subunits are required when 
a ~ 0 .  (27)) 

It is easy to show that the E T minimizing configuration is a tetrahedron 
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with two spins up and two spins down when I hl < 4J, with three spins up 
and one down when 4 h < h <  12J, and with all spins up when 123<h .  
Geometrical packing arguments then demonstrate that the ground states are 
the layered configurations described in the Introduction. The corresponding 
"ground state problems" defined by (17) are thus one dimensional in 
character. The situation is different at the super-degenerate points. When 
h = 12J, the permitted tetrahedra have either one or zero down spins. A 
down spin corresponds to an occupied site, so in lattice gas language this 
restriction simply means that the nearest neighbors of an occupied site 
cannot be occupied. The ground state problem at h = 123 is simply the hard 
"sphere" problem on an fcc lattice! The phase transition of the hard sphere 
model is simply the T ~  0 limit of the first-order phase boundary shown in 
Fig. 3, and the critical activity of the hard sphere lattice gas gives the 
limiting slope of the k B T/J vs. hid coexistence line by Eq. (14). More infor- 
mation on the phase coexistence line, such as its limiting curvature, could be 
obtained by investigating the "soft sphere" lattice gas problem in which the 
nearest-neighbor repulsive interaction is strong but not infinite. 

On the other hand when h = 4J the permitted tetrahedra have either one 
or two down spins, so an occupied site may have from zero to four nearest 
neighbors. (This problem is not, however, equivalent to a lattice gas in which 
each atom has a maximum of four nearest neighbors.) The number of down 
spins (occupied sites) on an N site lattice can range from �88 to �89 We refer 
to models of this type as "hard constraint" lattice gases, the constraint being 
the occupation number restriction for each tetrahedron. As before, infor- 
mation about the hard constraint model can be transcribed to the 
antiferromagnet problem at T =  0, and more information can be gained by 
relaxing slightly the constraint. 

What may we expect to find upon analysis of the hard constraint lattice 
gas corresponding to the h--= 4J super-degenerate point? Three possibilities 
seem reasonable: First, if the a = 0  phase diagram displays a finite- 
temperature triple point (as in the solid curve of Fig. 3) then the lattice gas 
will show a single, presumably first-order, transition. Second, if the disor- 
dered phase penetrates to zero temperature (as in the dashed curve of Fig. 3), 
and the AB-disorder and disorder-A3B phase coexistence lines spring 
vertically from the super-degenerate point, then the lattice gas will show a 
single transition at z = 1. Third, if the disordered phase penetrates to zero 
temperature but the two coexistence lines bounding it open with finite angle, 
then the lattice gas will show two transitions: with increasing activity the 
system will pass from A 3B order to disorder and then from disorder to AB 
order. This list does not, of course, exclude other possibilities, such as the 
coexistence of a large number of phases at the super-degenerate point (as is 
known to happen at the multiphase point of the ANNNI model). 
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The precise mapping between the thermodynamic quantities of the 
super-degenerate point and those of the hard constraint lattice gas follows in 
the usual way from (17). In particular, the grand canonical function of the 
lattice gas is 

~N(Z) = ~ Z n (19) 

and its reduced pressure is 

p ( z ) =  lim IN -1 log(ZN(z)) ] 
N--* oO 

(20) 

The basic thermodynamic relation is 

p(z )  = s(z)  + p(z)  log(z) (21) 

where s(z) is the entropy per lattice site in units of kB, and p(z) is the 
density, obtainable from 

p(z) = z (dp/dz)  (22) 

The significant feature of the mapping is that the lattice gas s(z), obtained 
through (21), is identical to the limit of the antiferromagnet model entropy 
as J / k  B T ~  0 along a ray with slope given by (14). We also note, for future 
use, that 

do dp d2p ( ( n -  (n)) 2) (23) 
dz - dz + z dz 2 - z N  

is nonnegative for physical values of z (as is also clear on physical grounds). 
We now prove that the maximum entropy for any hard constraint 

lattice gas falls at activity z =  1, and that the entropy is monotonic 
nondecreasing as z varies from 0 to 1 and monotonic nonincreasing as z 
varies from 1 to m. This implies that the limiting entropies obtained by 
approaching the super-degenerate point along different rays need not be iden- 
tical, and that the maximum such entropy is obtained by approaching 
vertically. The proof is based on a variational principle over probability 
distributions. The standard grand canonical probability distribution weq(~) 
over states { is given as usual by 

w~q(~) = z " / ~ ( z )  (24) 

In this distribution, we can calculate 

oleo, ~"] - ~ n(~) ~oeq(~) (25) 
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and 

s[o9 eq] _= -- ~ co~q(~ x) log(co~q(~)) (26) 
g 

and they will be the same as the corresponding "thermodynamic" values of 
p( z )  and s ( z )  obtained through (21) and (22). However, Eq. (25) and (26) 
can be evaluated in any normalized probability distribution co(~). The 
variational principle (42) states that the pressure 

p[z, ~o] _-- s[~,] + p[,o] log(z) (27) 

obtained using the equilibrium distribution co eq is the maximum p[z ,  coJ 
obtainable from any distribution. In particular, p [ z ,  co eq] is greater than or 
equal to the pressure calculated using the distribution appropriate to some 
other value of z, say, z ' ,  so 

s[co~ q] +p[co eq] log(z)>~ s[co~g] +p[co eq] log(z) (28) 

o r  

s ( z )  -- s ( z ' )  >>/-[p(z) -- p(z ' ) ]  log(z) (29) 

We first examine the case z '  < z < 1. From (23), the right-hand side of (29) 
is nonnegative, so 

z '  < z  < ~ ~ s ( z ' ) < s ( z )  (30) 

Now take the case z '  > z  > 1. The right-hand side of (29) is again 
nonnegative, whence 

z '  > z > 1 ~ s ( z ' )  <~ s(z) (31) 

and the result is proved. 
The above analysis suggests strongly that the phase coexistence line 

originating at T =  0, h = 12 bends toward the A313 phase (as it does when 
a > 0). Otherwise the corresponding hard constraint lattice gas would show 
a transition at z < 1, and so, by (30), the entropy would increase in passing 
from the disordered to the A3B ordered phase! Similar arguments can be 
applied to the antiferromagnetic Ising model on the square and simple cubic 
lattices, which have super-degenerate points at h = 4J  and 6J, respectively. In 
these cases our argument is less persuasive because the transition is expected 
to be continuous rather than first order. Even so, the result z c > 1 is well 
supported by the approximate critical activities obtained from series 
analysis: these are z c -= 3.7962 and z c = 1.09 • 0.07, respectively (as found 
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by Baxter, Enting, and Tsang (4~) and by Gaunt(44)). Our  result also argues 
against  the reentrant  t ransi t ions predicted (45) by CVM in the simple cubic 
antiferromagnet.  On the other hand, the body centered cubic lat t ice has a 
super-degenerate point  at h = 8 J ,  but  Gaun t  ~44) est imates that  the 

corresponding lat t ice gas has a cri t ical  t ransi t ion at z C = 0.77 i 0.05. 
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